Source code for example_eeg_processing
import numpy as np
from brainaccess.connect import processor
[docs]
t = np.arange(0, 5, step=1.0 / (sampling_rate))
wave = 10 * np.sin(np.pi * 2 * 5 * t)
wave += 100 * np.sin(np.pi * 2 * 23 * t)
[docs]
wave = wave.reshape(5, sampling_rate) + 2
[docs]
wave2 = 10 * np.sin(np.pi * 2 * 5 * t).reshape(5, sampling_rate) + 2
data = np.stack([wave, wave2], axis=2)
[docs]
data = np.moveaxis(data, 2, 0)
# Calculate mean of the data
[docs]
mean = processor.mean(data[0, :, :])
# Get signal quality
[docs]
quality = processor.get_signal_quality(data[0, :, :])
# Filter data
[docs]
data_filtered = processor.filter_bandpass(data, sampling_rate, 48, 52)
# Calculate fft
[docs]
data_fft = processor.fft(data, sampling_rate)["mag"]