Source code for example_eeg_processing

import numpy as np

from brainaccess.connect import processor


[docs] sampling_rate = 250
[docs] t = np.arange(0, 5, step=1.0 / (sampling_rate))
wave = 10 * np.sin(np.pi * 2 * 5 * t) wave += 100 * np.sin(np.pi * 2 * 23 * t)
[docs] wave = wave.reshape(5, sampling_rate) + 2
[docs] wave2 = 10 * np.sin(np.pi * 2 * 5 * t).reshape(5, sampling_rate) + 2
data = np.stack([wave, wave2], axis=2)
[docs] data = np.moveaxis(data, 2, 0)
# Calculate mean of the data
[docs] mean = processor.mean(data[0, :, :])
# Get signal quality
[docs] quality = processor.get_signal_quality(data[0, :, :])
# Filter data
[docs] data_filtered = processor.filter_bandpass(data, sampling_rate, 48, 52)
# Calculate fft
[docs] data_fft = processor.fft(data, sampling_rate)["mag"]